
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-662-54580-5-9

JANI: Quantitative Model and Tool Interaction

Carlos E. Budde1, Christian Dehnert2, Ernst Moritz Hahn3,
Arnd Hartmanns4, Sebastian Junges2, and Andrea Turrini3

1 Universidad Nacional de Córdoba, Córdoba, Argentina
2 RWTH Aachen University, Aachen, Germany

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

4 University of Twente, Enschede, The Netherlands

Abstract The formal analysis of critical systems is supported by a vast
space of modelling formalisms and tools. The variety of incompatible
formats and tools however poses a significant challenge to practical ad-
option as well as continued research. In this paper, we propose the Jani
model format and tool interaction protocol. The format is a metamodel
based on networks of communicating automata and has been designed
for ease of implementation without sacrificing readability. The purpose
of the protocol is to provide a stable and uniform interface between tools
such as model checkers, transformers, and user interfaces. Jani uses the
Json data format, inheriting its ease of use and inherent extensibility.
Jani initially targets, but is not limited to, quantitative model check-
ing. Several existing tools now support the verification of Jani models,
and automatic converters from a diverse set of higher-level modelling
languages have been implemented. The ultimate purpose of Jani is to
simplify tool development, encourage research cooperation, and pave the
way towards a future competition in quantitative model checking.

1 Introduction

Significant progress has been made in the area of formal verification to allow the
analysis of ever more realistic, mathematically precise models of performance-,
safety- or economically-critical systems. Such models can be automatically de-
rived from the program or machine code of an existing implementation, or
they can be constructed in a suitable modelling language during the system
design phase. Many such languages, including process algebras like CCS [50]
and CSP [36], lower-level formalisms like reactive modules [2], and high-level
imperative-style languages like Promela [37], have been developed. However,
the variety of languages, most of them supported by a single dedicated tool, is
a major obstacle for new users seeking to apply formal methods in their field
of work. Several efforts have been made to standardise modelling languages for
broader use (notably Lotos [10], an ISO standard), or to develop overarching
formalisms that offer a union of the features of many different specialised lan-
guages (a recent example being the CIF language and format [1]). Yet none of
these efforts appears to have had a lasting impact on practice; of our examples,

http://dx.doi.org/10.1007/978-3-662-54580-5-9

effectively the only implementation of Lotos is in the Cadp toolset [26], and
active CIF support appears restricted to the CIF 3 tool [6].

We argue that the adoption of any standard formalism is hindered by a com-
bination of the proposed standard (a) being complex and difficult to implement,
(b) appearing at a time when there are already a number of well-established
tools with their own modelling formalisms, and (c) existing in a conflict between
supporting many different modelling purposes versus being a succinct way to
support a particular technique or type of systems. As most new verification
tools are still developed in an academic context, problem a creates work that
is at best tangential to the actual research, and problem b means that there is
little incentive to implement a new parser in an existing tool since such an effort
is unlikely to lead to a publication. We observe that new tools continue to define
their own new input language or a new dialect of an existing one as a result.

A new format. In this paper, we propose jani-model: another format for formal
models aimed at becoming a common input language for existing and future
tools. However, jani-model was created with problems a-c in mind: First of
all, it is targeted to the specific field of quantitative verification using (ex-
tensions of) automata-like probabilistic models such as Markov decision pro-
cesses (MDP [52]), probabilistic timed automata (PTA [45]), or continuous-time
Markov chains (CTMC). This field is much younger than formal methods in gen-
eral. Consequently, the tooling landscape is at an earlier stage in its evolution.
We believe that problem b yet has little relevance there, and that now is actually
the time where a push for commonality in quantitative verification tools is still
possible as well as maximally beneficial. Several tools already support subsets or
extensions of the Prism model checker’s [43] language, so a good basis to avoid
problem c appears to already exist in this field.

Consequently, the semantic model of the Prism language—networks of dis-
crete- or continuous-time Markov chains (DTMC or CTMC), MDP or PTA
with variables—forms the conceptual basis of jani-model. We have conservat-
ively extended this model to also support Markov automata (MA, [21]) as well
as stochastic timed and hybrid automata (STA [9] and SHA [24]). We have also
replaced or generalised some concepts to allow more concise and flexible mod-
elling. Notably, we took inspiration from the use of synchronisation vectors in
Cadp and related tools to compactly-yet-flexibly specify how automata interact;
we have added transient variables as seen in RDDL [54] to e.g. allow value passing
without having to add state variables; and we have revised the specification of
rewards and removed restrictions on global variables.

We could have made these changes and extensions to the textual syntax of
the Prism language, creating a new dialect. However, in our experience, imple-
menting a Prism language parser is non-trivial and time-consuming. To avoid
problem a, jani-model is thus designed to be easy to generate and parse program-
matically (while remaining “human-debuggable”) without library dependencies.
It defines an intentionally small set of core constructs, but its structure allows
for easy extensibility. Several advanced features—like support for complex data-
types or recursive functions—are already specified as separate extensions. We

do not expect users to create jani-model files manually. Instead, they will be
automatically generated from higher-level and domain-specific languages.

A tool interaction protocol. jani-model helps the users as well as the developers
of quantitative verification tools. Yet the latter face another obstacle: New tech-
niques often require combining existing approaches implemented by others, or
using existing tools for parts of the new analysis. In an academic setting, re-
implementation is usually work for little reward, but also squanders the testing
and performance tuning effort that went into the original tool. The alternat-
ive is to reuse the existing tool through whatever interface it provides: either
a command-line interface—usually unstable, changing between tool versions—
or an API tied or tailored to one programming language. The same problems
apply to benchmarking and verification competitions. To help with interfacing
verification tools, we propose the jani-interaction protocol. It defines a clean,
flexible, programming language-independent interface to query a tool’s capabil-
ities, configure its parameters, perform model transformations, launch verifica-
tion tasks, and obtain results. Again, we focused on ease of implementation, so
jani-interaction is simple to support without dependencies on external libraries
or frameworks, and only prescribes a small set of messages with clearly defined
extension points.

Tool support. Jani has been designed in a collaborative effort, and a number
of quantitative verification tools implement jani-model and jani-interaction today.
They provide connections to existing modelling languages designed for humans
as well as a number of analysis techniques with very different capabilities and spe-
cialisations based on traditional and statistical model checking. We summarise
the current tool support in Section 5. We expect the number of Jani implement-
ations to further grow as more input languages are connected and future new
verification techniques are implemented for jani-model right from the start.

Related work. We already mentioned Lotos as an early standardisation ef-
fort, as well as CIF, which covers quantitative aspects such as timed and hybrid,
but not probabilistic, behaviour. CIF is a complex specification consisting of a
textual and graphical syntax for human use plus an XML representation. It had
connections to a variety of tools including those based on Modelica [25], which
itself is also an open specification intended to be supported by tools focusing
on continuous system and controller simulation. The HOA format [4] is a tool-
independent exchange format for ω-automata designed to represent linear-time
properties for or during model checking. Atlantif [55] is an intermediate model
for real-time systems with data that can be translated to timed automata or Petri
nets. In the area of satisfiability-modulo-theories (SMT) solvers, the SMT-LIB
standard [5] defines a widely-used data format and tool interface protocol ana-
logous to the pair of jani-model/jani-interaction that we propose for quantitative
verification. Boogie 2 [47] is an intermediate language used by static program
verification tools. The formats mentioned so far provide concise high-level de-
scriptions of potentially vast state spaces. An alternative is to exchange low-level

var ReplyAnalysisEngines = schema({
"type": "analysis-engines",
"id": Number.min(1).step(1),
"engines": Array.of({

"id": Identifier,
"metadata": Metadata,
"?params": Array.of(ParamDef)

})
});

Listing 1. js-schema message specification

{ "type": "analysis-engines",
"id": 123456,
"engines": [

"id": "simengine2"
"metadata": {

"name": "FIG",
"version": {

"major": 1, "minor": 13
} }] }

Listing 2. Json message instance

representations of actual state spaces, representing all the concrete states of the
semantics of some high-level model. Examples of such state space-level encod-
ings include Cadp’s BCG format and Mrmc’s [41] .tra files. Disadvantages are
that the file size explodes with the state space, and all structural information
necessary for symbolic (e.g. BDD-based) verification or static analysis is lost.

A number of tools take a reversed approach by providing an interface to
plug in different input languages. In the non-quantitative setting, one example is
LTSmin [39] and its PINS interface. However, this is a C/C++ API on the state
space level, so every input language needs to provide a complete implementation
of its semantics for this tool-specific interface. A prominent tool with a similar
approach that uses quantitative models is Möbius [13]. Notably, a command-line
interface has recently been added to Möbius’ existing graphical and low-level
interfaces to improve interoperability [42]. The Modest Toolset [33] also used
an internal semantic model similar to that of jani-model that allows it to translate
and connect to various external tools, albeit over their command-line interfaces.

The Jani specification can be seen as a metamodel. The Eclipse EMF/Ecore
platform [19] is popular for building and working with metamodels. We chose to
create a standalone specification instead in order to avoid the heavy dependency
on Eclipse and to not force a preferred programming language on implementers.

2 Json and js-schema

jani-model and jani-interaction use the Json [11] data format to encode their mod-
els and messages, respectively. Json is a textual, language independent format
for representing data based on objects, arrays, and a small number of primitives.
In contrast to alternatives like XML, it is extremely simple: its entire grammar
can be given in just five small syntax diagrams. A generic Json parser is easy
to write, plus native parser libraries are available for many programming lan-
guages. The json.org website shows the syntax diagrams and maintains a list of
libraries. In contrast to binary encodings, Json remains human-readable, aiding
in debugging. We show an example of the Json code of an (abbreviated) jani-
interaction message in Listing 2. Many of the advantages of Jani can be directly
derived from the use of a Json encoding. We already mentioned the simplicity
of implementing a parser, but another important aspect is that a Json format is

http://www.json.org/

DTMC

MDP

PTA

CTMC

CTMDP

MA

STA

SHA

LTS

TA

HA

PHA
+continuous

probability

+contin.
dynamics

+ real
time

nondeter-
minism

discrete
probabilities

exponential
res. times

Key: SHA stochastic hybrid automata
PHA probabilistic hybrid automata
STA stochastic timed automata
HA hybrid automata
PTA probabilistic timed automata
MA Markov automata
TA timed automata
MDP Markov decision processes
CTMDP continuous-time MDP
LTS labelled transition systems
DTMC discrete-time Markov chains
CTMC continuous-time Markov chains

Figure 1. Model types supported by the jani-model format

inherently extensible as new attributes can be added to objects without breaking
an implementation that only reads a previously defined, smaller set of attributes.
In addition, both jani-model and jani-interaction contain dedicated versioning and
extension mechanisms to cleanly handle situations where future additions may
change the semantics of previously defined constructs.

To formally specify what a valid Jani model is, as well as how the messages
of the interaction protocol are encoded, we use the js-schema language [51]. js-
schema is a lightweight syntax to define object schemas as well as a schema
validation library. Compared to the popular alternative of Json Schema, js-
schema specifications are syntactically more similar to the data they describe and
thus easier to write and understand. By using an executable schema definition
language, we directly obtain a procedure to unambiguously determine whether
a given piece of Json data can represent a Jani object. Some more complex
requirements cannot be expressed within js-schema, e.g. when the presence of
one attribute is required if and only if another attribute is not present. These
additional checks are documented as comments in our js-schema specification
for Jani, and they are checked by the reference parser implementation in the
Modest Toolset. In Listing 1, we show (part of) the js-schema specification for
the ReplyAnalysisEngines message type of jani-interaction. The Json object of
Listing 2 conforms to this schema. An attribute name starting with ? indicates
an optional attribute, and in our example, Identifier, Metadata and ParamDef
are references to other schemas defined elsewhere within the Jani specification
while everything else refers to built-in components of js-schema.

3 The Jani Model Format

The first part of the Jani specification is the jani-model model format. It defines
a direct Json representation of networks of SHA with variables, or special cases
thereof. In Figure 1, we show the automata models supported by jani-model. By
providing variables and parallel composition, models with large or infinite state
spaces can be represented succinctly. jani-model includes a basic set of variable

... "features": ["derived-operators"],
"variables": [{ "name": "i", "initial-value": 0,

"type": { "kind": "bounded", "base": "int",
"lower-bound": 0, "upper-bound": 7 } }],

"edges":
[{ "location": "loc0",

"guard": { "op": "∧",
"left": { "op": "<", "left": 0, "right": "i" },
"right": { "op": "<", "left": "i", "right": 7 } },

"destinations": [
{ "location": "loc0", "probability": 0.8, "assignments": [

{ "ref": "i",
"value": { "op": "+", "left": "i", "right": 1 } }] },

{ "location": "fail", "probability": 0.2 }] }], ...

Listing 3. Excerpt of a jani-model MDP model

types and expressions with most common operations, and allows the specification
of probabilistic and reward-based properties for verification within a model.

The overriding goal of jani-model is simplicity for implementers. The core
specification fits on five printed pages. Where expressions over the model’s vari-
ables are required (such as a guard, the probability of a destination of an edge,
or the right-hand side of an assignment), they are represented as expression
trees. This is in contrast to other representations of networks of automata, e.g.
Uppaal’s [7] XML format, where they are stored as expression strings. Using
trees makes it entirely unnecessary to write any kind of expression parsing code
to process jani-model models. Listing 3 shows a slightly simplified excerpt of an
MDP model with two locations loc0 and fail. It has one edge from loc0 with
guard 0 < i∧ i < 7 that loops back to loc0 with probability 0.8, incrementing i
by 1, and goes to fail with probability 0.2.

An important aspect of the format is its extensibility, which is based on the
mentioned use of Json in combination with an explicit extension mechanism: a
model can list a number of model features that it makes use of. They are defined
separately from the core jani-model specification, and include a derived-oper-
ators features, which provides for e.g. max and min operations (which could
be represented with comparisons and if-then-else in core jani-model), an arrays
and a datatypes feature that specify array types resp. functional-style recursive
datatypes (e.g. to define an unbounded linked list type), and a functions feature
that allows the definition of (mutually) recursive functions for use in expressions.
Feature support will vary between tools; for example, BDD-based model checkers
will typically not be able to easily handle unbounded recursive datatypes.

While its syntax is completely different, the semantic concepts of jani-model
are based on the Prism language. However, it is more general in some aspects:

Locations. Automata in jani-model consist of local variables and locations con-
nected by edges with action labels, guards, rates, probabilistic branches and
assignments over the variables. While being natural for an automaton, having
both locations and discrete variables is not strictly necessary as one can be en-

coded using the other. In fact, Prism only supports the latter, necessitating the
use of “program counter” variables to emulate locations if desired. By supporting
both, jani-model provides modelling flexibility; if a tool prefers one extreme, an
automatic conversion can easily be implemented. Locations provide structural
information for e.g. optimisations and static analysis as well as a natural point
to store the time progress conditions (“invariants”) of TA-based models.

Synchronisation vectors. A jani-model model consists of a set of automata that
execute in parallel. Edges are either performed independently, or two or more
automata synchronise on an action label and perform an edge simultaneously.
Inspired by Cadp’s exp.open tool, jani-model uses synchronisation vectors and
sets of input-enabled actions as a general specification of synchronisation pat-
terns. As an example, consider three automata. To specify CSP- or Prism-style
multi-way synchronisation on action a, we include the one vector [a, a, a]. For
CCS-style binary synchronisation between a! and a?, we need the six vectors

{ [a!, a?,−], [a?, a!,−], [a!,−, a?], [a?,−, a!], [−, a!, a?], [−, a?, a!] }.
For Uppaal-style broadcast synchronisation, we make all automata input-
enabled on a? and use the three vectors { [a!, a?, a?], [a?, a!, a?], [a?, a?, a!] }.
Synchronisation vectors can express all common process-algebraic operations like
renaming or hiding, too—they are a concise yet extremely powerful mechanism.

As a further difference to Prism, jani-model allows assignments to global vari-
ables on synchronising edges. Inconsistent concurrent assignments are a model-
ling error. This small extension removes a major modelling annoyance, but also
has important implementation consequences (see Section 5 on the Storm tool).

Transient variables and assignments. When edges synchronise in a network of
automata, the assignments of all participating automata are typically performed
all at once, atomically. In jani-model, we additionally allow each assignment to be
annotated with an index. Assignments with the same index are executed atomic-
ally, but sets of assignments with different indices are performed sequentially in
the indexed order. In combination with transient variables, which are not part
of the state vectors and get reset before and after taking an edge so they do not
blow up the state space, this allows e.g. efficient value passing: If two automata
synchronise and want to pass a value v, the first one can “send” v by making an
assignment t := v to a global transient variable t with index i on its synchron-
ising edge while the second one can “receive” v by making an assignment l := t
to the local variable l with index i′ > i on its own synchronising edge.

Rewards. Finally, reward structures in jani-model are simply expressions over
global (transient or non-transient) variables. Properties indicate whether they
are instantaneous or steady-state rewards, or whether to accumulate when edges
are taken (edge/transition rewards) or over time in locations (rate rewards). This
is again a very simple but expressive way to specify rewards. As an example,
{ "op": "Emax", "exp": "i", "accumulate": ["steps"], "step-instant": 6 }

asks for the maximum expected reward, computed by accumulating the current
value of variable i whenever a transition is taken, after exactly 6 transitions.

4 The Jani Interaction Protocol

The second part of the Jani specification is the jani-interaction tool interaction
and automation protocol. Its purpose is to provide a stable interface that allows
the reuse of existing implementations from new tools, reduce setup problems by
allowing communication between tools running on different machines, and allow
for a common integrated graphical user interface for Jani-based verifiers.

jani-interaction is a client-server protocol. A server can support a number of
roles. We currently define the analyse and transform roles, which offer access
to verification procedures and model transformations, respectively. Roles are the
main extension point, allowing new roles to be added in the future. A tool sup-
porting the analyse role provides a number of analysis engines, which represent
the verification algorithms it implements. The protocol then allows analysis tasks
to be started, with the server subsequently sending status updates to the client
and the client having the ability to cancel the analysis. The jani-interaction spe-
cification defines a total of 18 message types, out of which 4 are specific to the
analyse and 4 are specific to the transform role. 5 message types are for task
management and used by both roles. The ReplyAnalysisEngines message that
we showed (in a slightly shortened form) in Listings 1 and 2, for example, is
a server-to-client message of the analyse role that is sent when the client has
queried for the available analysis engines. It includes an array of self-describing
parameter definitions; the client can supply values for these parameters to config-
ure the analysis engine when it starts an analysis task. Within the corresponding
StartAnalysisTask message, the client also submits the model to be analysed.
It can be either a jani-model model, which is Json data and thus included ver-
batim in the message, or a set of Json strings with the contents of the model
files of any other modelling formalism with a textual representation.

A jani-interaction session consists of the exchange of a number of Json mes-
sages. This can occur in one of two ways: either remotely over the WebSocket
network protocol [23], with each message transmitted in one WebSocket text
message, or locally by the client starting the server tool and writing its messages
into the server’s standard input stream, with the server writing its replies onto
its standard output stream, one message per line. Using WebSocket communic-
ation allows running a tool remotely on a machine that is configured in exactly
the way required for the tool to run, and makes it possible to access tools using
JavaScript from websites in a browser. Using standard streams is an easier-to-
implement alternative for making an existing tool support jani-interaction. We
show an example jani-interaction session in Figure 2.

5 Tool Support

The Jani specification is already supported by a number of quantitative verific-
ation tools as outlined in Figure 3. These tools provide translations from several
higher-level modelling languages to jani-model and, in some cases, vice-versa,
thus implementing the functionality of the transform role of jani-interaction.

Client
(e.g. GUI)

Server
(e.g. model checker)

Authenticate
{ ..., "login": ..., ... }

Capabilities

{ ..., "roles": ["analyse"], ... }

QueryAnalysisEngines
{ "id": 6 }

ReplyAnalysisEngines

{ "id": 6, "engines": [{ "id": 2, ... }], ... }

StartAnalysisTask{ "id": 11, "engine": 2, "model": ..., ... }

ProvideTaskStatus

{ "id": 11, "status": "Working..." }

ProvideTaskProgress

{ "id": 11, "progress": 0.3 }

ProvideTaskProgress

{ "id": 11, "progress": 0.9 }

ProvideAnalysisResults

{ "id": 11, "results": { "property": ..., ... }, ... }

StopTask
{ "id": 11 }

ProvideTaskMessage

{ "id": 11, "message": "Cancelled", "severity": "info" }

TaskEnded
{ "id": 11 }

Close
{ "reason": "exit" }

connects
to tool

authenticates
client
(optional)

requests
analysis
of model

analyses
a model

processes
status

updates,
partial
results

cancels
analysis

client
exits

Figure 2. An example jani-interaction session

Each of them also comes with a set of analysis engines that perform transitional
exhaustive or statistical model checking of jani-model models to produce consist-
ent verification results, corresponding to jani-interaction’s analyse role.

5.1 Modelling Languages

jani-model is designed to be easily machine-readable and we do not expect users
to write jani-model files directly. Instead, we provide automated translations from
the Prism language, GSPN, IOSA, Modest, pGCL and xSADF.

Prism language. The Prism language is based on reactive modules [2] and used
as input language of the Prism model checker [43]. Variants and subsets are
used by other quantitative verification tools, which is why we decided to base
jani-model on its core concepts. A model in the Prism language consists of a set

IOSA

Modest

xSADF

GSPN

pGCL

Prism

language

jani-m
odel

Fig

Modest
Toolset

Storm

IscasMC

tool

Fig

Modest
Toolset

Storm

IscasMC

Prism

engine

rare-event sim.

explicit-state

SMC

sparse matrix

symbolic (BDDs)

sparse matrix

symbolic (BDDs)

(various)

con
sistent

resu
lts

Figure 3. The Jani landscape

of modules executing in parallel. Each has a number of discrete variables and a
set of probabilistic commands with a guard and a probability distribution over
assignments. There are no control flow constructs like e.g. loops; they have to be
manually encoded in variables. The Prism language was originally designed to
model DTMC, CTMC and MDP, and has since been extended to support PTA.
We show an example of a Prism model in Figure 4.

The official bidirectional conversion between the Prism language and jani-
model is implemented in IscasMC. This gives access to the vast collection of
Prism case studies and benchmarks [44] to all tools that support jani-model, and
allows the use of Prism’s model checking engines to analyse jani-model files and
models in all input languages for which a conversion to jani-model exists.

GSPN. Petri Nets are a widely-used model for concurrent processes. Generalised
stochastic Petri nets (GSPN, [48]) provide exponentially delayed transitions in
addition to the standard immediate transitions. Nondeterminism arising due to
the latter has often been resolved by assigning weights, thereby implicitly having
discrete probabilistic branching in the model. We show an example GSPN in
Figure 5, which contains two exponentially delayed transitions with rates λ1
and λ2. A formal semantics for every GSPN, including “confused” ones with
actual nondeterminism, in terms of MA has been developed recently [20].

Based on an implementation of this semantics, the Storm tool can translate
GSPN given either as a greatSPN project [3] or in a variant of the ISO-standard
PNML [38] format into a jani-model description. Variables describe the markings,
and the encoding of nondeterministic and delayed transitions is straightforward.
Only weights require a somewhat more involved encoding as expressions.

IOSA. Stochastic automata (SA, [14]) are decision processes in which the occur-
rence of events is governed by random variables called clocks. These can follow
arbitrary continuous probability distributions. Input/output SA (I/O SA, [15])
are a variant of networks of SA that guarantee the absence of nondeterminism:

Prism language:
module Channel

l: [0..1]; // control loc
c: clock; // for delay
invariant

l = 1 => c <= 2
endinvariant
[snd] l = 0 -> 0.01:(l’ = 0)

+ 0.99:(l’ = 1) & (c’ = 0)
[rcv] l = 1 & c >= 2 -> (l’ = 0)

endmodule

Modest:
process Channel() {

snd palt {
:99: delay(2)

rcv
: 1: // msg lost

{==}
};
Channel()

}
Channel()

Figure 4. A channel PTA model in Prism and Modest

λ1λ2

Figure 5. A GSPN

Automata must be input-enabled, each output can only be produced by a single
automaton in the network, and clocks can only control the timing of outputs.
Networks of input/output SA can be modelled in the IOSA language, which is
syntactically a variant of the Prism language. We show an example in Listing 4,
where action a is output (!) for M1 and input (?) for M2. Synchronisation is
performed in a broadcast fashion, meaning an output will synchronise with all
matching inputs. This ensures the input-enabledness requirement.

The Fig tool [12] translates IOSA to and from jani-model. In jani-model, the
STA model type is used, since I/O SA are a proper subset of STA. When convert-
ing from jani-model to IOSA, STA and CTMC models where the synchronisation
vectors correspond to broadcast synchronisation are supported. STA are accep-
ted only if the STA clocks are used in a way that can be mapped to SA.

Modest. The Modest language is a modelling formalism with a semantics
in terms of STA [9], later extended to SHA [29]. It is an expressive, high-level
language with features like recursive process calls, do loops, exception handling,
and complex datatypes. We show a very small example in Figure 4. The Modest
Toolset implements conversions from Modest to jani-model and back. In terms
of supported model types, Modest is the most expressive language currently
connected to jani-model because everything can be seen as a special case of SHA.

pGCL. Probabilistic programming languages extend standard languages with
constructs to sample from random distributions and to condition program runs
on observations about (random) data. Such constructs are at the heart of al-
gorithms in machine learning, security, and quantum computing [27]. The oper-
ational semantics of probabilistic programs are (possibly infinite) MDP.

One example of a probabilistic programming language is the probabilistic
guarded command language (pGCL, [49]) with observe statements [40]. The
Storm tool implements a translation from pGCL via program graphs to jani-
model. A noticeable feature of the translation is the detection of rewards: In the
example pGCL program given in Listing 5, if we omit the observe statement,
the variable x can be considered a reward, which then makes the MDP finite
and thus amenable to probabilistic model checking.

module M1
c: clock;
[a!] true @ c -> (c’ = gamma(0.5, 2 * N));

endmodule
module M2

i: [0..M]; x: [1..M + 1];
[a?] i <= M -> (i’ = x) & (x’ = i + 1);

endmodule

Listing 4. An IOSA model of two modules

while(c = 0)
{

{ x := x + 1 }
[1/2]
{ c := 1 }

};
observe "x is odd"

Listing 5. pGCL

xSADF. Dataflow formalisms are popular in the study of embedded data pro-
cessing applications. The recently introduced formalism xSADF [35], an exten-
sion of scenario-aware dataflow [56], adds cost annotations (to model, for ex-
ample, power consumption), nondeterminism, and continuous stochastic execu-
tion times. It is equipped with a compositional semantics in terms of STA, which
is implemented in the Modest Toolset. Via the latter’s support for jani-model,
we can now also convert xSADF specifications to jani-model. The resulting mod-
els are networks of STA that make use of the datatypes and functions features
to encode the unbounded typed scenario channels of xSADF.

5.2 Analysis Tools

Support for the verification of jani-model models is currently provided by Fig,
IscasMC, the Modest Toolset and Storm, as well as Prism via IscasMC’s
ability to convert jani-model to the Prism language. We summarise the capabil-
ities and restrictions of the various analysis engines in Table 1. Xdenotes current
support, while ∗means that an implementation is planned. (1) indicates that only
broadcast-based input/output STA that correspond to stochastic automata are
supported. (2) marks planned support of the arrays feature that will be restric-
ted to fixed-size arrays. The Modest Toolset’s support for SHA is via the
prohver tool [29], indicated by (3), and its statistical model checker only sup-
ports deterministic models where marked (4). Concerning supported properties,
we consider the broad classes of probabilistic reachability (P), probabilistic com-
putation tree logic (PCTL), the probabilities of linear temporal logic formulas
(LTL), any type of expected values or rewards (E) and steady-state measures (S).

Fig. Specialised in rare event simulation, Fig [12] implements novel techniques
that allow the use of importance splitting [46] in a fully automated way. Import-
ance splitting speeds up the occurrence of some user-defined rare event in order
to better estimate its probability of occurrence.

Fig can be used to study transient and long run behaviour. Transient prop-
erties are expressed as P(¬stop U rare), where stop and rare are propositional
formulas describing simulation truncation and rare event occurrence, respect-
ively. Steady state properties correspond to the CSL expression S(rare). Aside
from standard Monte Carlo simulation, an engine based on RESTART-like [57]

Table 1. Support for model types, features and property classes in analysis tools

tool engine LT
S

D
T
M
C

C
T
M
C

M
D
P

C
T
M
D
P

M
A

T
A

P
T
A

ST
A

SH
A

ar
ra
ys

da
ta
ty
pe

s

fu
nc
ti
on

s

P P
C
T
L

LT
L

E S

Fig rare – ∗ X – – – – – (1) – (2) – ∗ X – – ∗ X

IscasMC
sparse X X X X ∗ ∗ – – – – – – – X X X ∗ ∗
bdd X X X X ∗ ∗ – – – – – – – X X X ∗ ∗

Modest
Toolset

explicit X X – X – – X X X (3) X X X X ∗ – X –
smc X X – X – (4) (4) (4) (4) – X X X X – – X –

Storm
sparse X X X X – X – – – – ∗ ∗ ∗ X X – X X
bdd X X X X – ∗ – – – – (2) – – X X – X ∗

Prism (various) X X X X – – X X – – – – – X X X X X

importance splitting can be used. The importance function needed by the latter
can be provided ad hoc by the user or computed automatically by the tool.

IscasMC. A Java-based model checker for stochastic systems, IscasMC [31] of-
fers an easy-to-use web interface for the evaluation of Markov chains and decision
processes against PCTL, PLTL, and PCTL* specifications. It is particularly effi-
cient in evaluating the probabilities of LTL properties, supporting multiple resol-
ution methods that improve the actual runtime on complex LTL properties [30].
IscasMC provides two analysis engines: one based on an explicit sparse matrix
encoding of the state space, and a symbolic one using binary decision diagrams
(BDD). IscasMC can be extended with plugins. This permits to support the
analysis of other formalisms, like quantumMarkov chains [22] and stochastic par-
ity games [32], as well as to use different (multi-terminal) BDD libraries [18] to
symbolically represent both the model and the automaton for the LTL formula.

The Modest Toolset. A modular collection of model transformation and
analysis tools centred around an internal metamodel of networks of stochastic
hybrid systems, which greatly influenced the design of jani-model, the Modest
Toolset [33] is an implementation of the multiple-formalism, multiple-solution
idea. Its core analysis engines today are the explicit-state model checker mcsta
and the statistical model checker (SMC) modes. The former handles MDP, PTA
and STA with billions of states via a disk-based approach [34] and efficiently
checks time- and reward-bounded properties without unnecessarily unfolding
the state space [28]. The latter focuses on detecting spurious nondeterminism
on-the-fly during simulation in order to be able to handle not just Markov chains.

Storm. Newly developed as the successor of the probabilistic model checker
MRMC [41], Storm [17] works with DTMC, CTMC, MDP and MA models. In
addition to its support for jani-model and the Prism language, it can also read
files in an explicit state space-level format similar to MRMC’s. The analysis
of models is backed by different engines that use different representations for

Table 2. Comparison of Prism- and jani-model-based state space generation

sparse/explicit engines symbolic engines (BDD)
Storm

Prism
Storm

Prism
model type params Jani Prism params Jani Prism
crowds DTMC 〈20, 5〉 8.9 s 8.4 s 26.2 s 〈20, 25〉 9.1 s 9.6 s 9.6 s
cluster CTMC 250 20.2 s 18.4 s 26.5 s 3000 32.1 s 31.1 s 96.7 s
consensus MDP 〈6, 4〉 15.3 s 14.6 s 48.3 s 〈10, 100〉 24.1 s 25.4 s 27.5 s
CSMA MDP 〈3, 4〉 13.8 s 13.1 s 15.4 s 〈4, 4〉 10.2 s 10.2 s 27.8 s

the model structure and reachable states, including sparse matrices and BDD.
Storm’s first aim is to achieve good performance, but special attention is also
given to a modular design that enables coherent and easy access to a variety
of solvers used by the analysis processes such as linear equation, mixed-integer
linear programming, and SMT solvers. Storm also supports parametric DTMC
and MDP. As the backend for Prophesy [16] and using a parameter lifting
approach [53], it significantly outperforms other parametric discrete-time veri-
fication tools.

The Prism language is known for its ability to compactly represent gigantic
models which can be very efficiently handled by BDD-based engines. In Storm,
jani-model and Prism models are currently handled by separate code paths.
This provided the opportunity to investigate whether the changes in state space
generation code caused by the new concepts of jani-model (in particular to sup-
port synchronising assignments to global variables in the BDD-based engine)
impact performance. Experiments were run on a quad-core 3.5GHz Intel Core
i7 system with Mac OS X 10.12, using four Prism benchmark models [44] and
their conversions to jani-model. We tested both explicit-state and symbolic en-
gines. Table 2 lists the model construction time of Storm with the jani-model
and Prism files and, for comparison, of Prism with the Prism file. The results
indicate that allowing for the extra language features in jani-model does not sig-
nificantly influence the model construction performance; the comparison with
Prism furthermore shows that this is not just due to a naïve implementation of
the Prism code path within Storm.

6 Conclusion

We have proposed the Jani specification for model exchange and tool interaction.
The complete specification and a library of models are available at jani-spec.org.
The goal of Jani is to reduce the effort required to develop verification tools,
especially in an academic setting, and to foster tool interoperation and compar-
ison. Supporting the jani-model format gives access to a large number of existing
models (in the format itself and in the various connected languages) for testing
and benchmarking at little effort compared to writing a full parser for one of the
existing modelling languages, which prioritise being easily human-writeable over
being easily machine-readable. While Jani is currently focused on quantitative

http://www.jani-spec.org

verification (cf. problem b of Section 1), standard labelled transition systems or
Kripke structures as used in traditional verification approaches can be repres-
ented in jani-model, too, and the jani-interaction protocol can be used with any
modelling formalism with a textual representation.

Outlook. As Jani is an ongoing effort, we use the jani-spec.org website to track
the growing list of implementing tools and their status (akin to Table 1). Ulti-
mately, we hope that Jani can lead the way towards a more coordinated tool
development process in quantitative verification that, together with the previous
definition of the Prism benchmark suite [44], will eventually enable a quantit-
ative model checking competition. Such competitions have been shown to have
a strong positive impact on the tooling landscape in affected fields [8].

Acknowledgements. This work is supported by the 3TU project “Big Software on
the Run”, ANPCyT grant PICT-2012-1823, BMBF-IKT 2020 project 16KIS0138
HODRIAN, CDZ project GZ 1023 (CAP), the CAS Fellowship for International
Young Scientists, the CAS/SAFEA International Fellowship Program for Creat-
ive Research Teams, the National Natural Science Foundation of China (grants
no. 61550110506 and 61650410658), and SeCyT-UNC grant 05/BP12.

References

1. Agut, D.E.N., van Beek, D.A., Rooda, J.E.: Syntax and semantics of the composi-
tional interchange format for hybrid systems. J. Log. Algebr. Program. 82(1), 1–52
(2013)

2. Alur, R., Henzinger, T.A.: Reactive modules. FMSD 15(1), 7–48 (1999)
3. Amparore, E.G.: A new GreatSPN GUI for GSPN editing and CSLTA model

checking. In: QEST. LNCS, vol. 8657, pp. 170–173 (2014)
4. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Kretínský, J., Müller, D.,

Parker, D., Strejcek, J.: The Hanoi omega-automata format. In: CAV. LNCS, vol.
9206, pp. 479–486 (2015)

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.5. Tech.
rep., Dep. of Computer Science, The University of Iowa (2015), www.smt-lib.org

6. van Beek, D.A., Fokkink, W., Hendriks, D., Hofkamp, A., Markovski, J., van de
Mortel-Fronczak, J.M., Reniers, M.A.: CIF 3: Model-based engineering of super-
visory controllers. In: TACAS. LNCS, vol. 8413, pp. 575–580 (2014)

7. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: QEST. pp. 125–126. IEEE CS (2006)

8. Beyer, D.: Software verification and verifiable witnesses (report on SV-COMP
2015). In: TACAS. LNCS, vol. 9035, pp. 401–416 (2015)

9. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.: MODEST: A
compositional modeling formalism for hard and softly timed systems. IEEE TSE
32(10), 812–830 (2006)

10. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LO-
TOS. Computer Networks 14, 25–59 (1987)

11. Bray, T.: The JavaScript Object Notation (JSON) data interchange format. RFC
7159, RFC Editor (March 2014), rfc-editor.org/rfc/rfc7159.txt

http://www.jani-spec.org
http://www.smt-lib.org/
http://www.rfc-editor.org/rfc/rfc7159.txt

12. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of import-
ance functions in fully automated importance splitting. In: VALUETOOLS. ICST
(2016)

13. Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Möbius 2.3: An
extensible tool for dependability, security, and performance evaluation of large and
complex system models. In: DSN. pp. 353–358. IEEE CS (2009)

14. D’Argenio, P.R., Katoen, J.: A theory of stochastic systems part I: stochastic
automata. Inf. Comput. 203(1), 1–38 (2005)

15. D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/output stochastic automata – com-
positionality and determinism. In: FORMATS. LNCS, vol. 9884, pp. 53–68 (2016)

16. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J., Ábrahám, E.: PROPhESY: A PRObabilistic Parameter SYnthesis tool. In:
CAV. LNCS, vol. 9206, pp. 214–231 (2015)

17. Dehnert, C., Junges, S., Katoen, J., Volk, M.: The probabilistic model checker
Storm (extended abstract). CoRR abs/1610.08713 (2016)

18. van Dijk, T., Hahn, E.M., Jansen, D.N., Li, Y., Neele, T., Stoelinga, M., Turrini,
A., Zhang, L.: A comparative study of BDD packages for probabilistic symbolic
model checking. In: SETTA. LNCS, vol. 9409, pp. 35–54 (2015)

19. Eclipse Foundation: Eclipse Modeling Framework (EMF) website.
eclipse.org/modeling/emf, accessed: 2016-01-27

20. Eisentraut, C., Hermanns, H., Katoen, J., Zhang, L.: A semantics for every GSPN.
In: Petri Nets. LNCS, vol. 7927, pp. 90–109 (2013)

21. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS. pp. 342–351. IEEE CS (2010)

22. Feng, Y., Hahn, E.M., Turrini, A., Zhang, L.: QPMC: A model checker for quantum
programs and protocols. In: FM. LNCS, vol. 9109, pp. 265–272 (2015)

23. Fette, I., Melnikov, A.: The WebSocket protocol. RFC 6455, RFC Editor (Decem-
ber 2011), rfc-editor.org/rfc/rfc6455.txt

24. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: HSCC. pp. 43–52. ACM
(2011)

25. Fritzson, P.: Modelica – A cyber-physical modeling language and the OpenModelica
environment. In: IWCMC. pp. 1648–1653. IEEE (2011)

26. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. STTT 15(2), 89–107 (2013)

27. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE. pp. 167–181. ACM (2014)

28. Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded probab-
ilistic model checking techniques. In: SETTA. LNCS, vol. 9984, pp. 85–100 (2016)

29. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling
and analysis framework for stochastic hybrid systems. FMSD 43(2), 191–232 (2013)

30. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: CONCUR. LIPIcs, vol. 42, pp. 354–367.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

31. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: IscasMc: A web-based
probabilistic model checker. In: FM. LNCS, vol. 8442, pp. 312–317 (2014)

32. Hahn, E.M., Schewe, S., Turrini, A., Zhang, L.: A simple algorithm for solving
qualitative probabilistic parity games. In: CAV. LNCS, vol. 9780, pp. 291–311
(2016)

https://eclipse.org/modeling/emf/
http://www.rfc-editor.org/rfc/rfc6455.txt

33. Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for
quantitative modelling and verification. In: TACAS. LNCS, vol. 8413, pp. 593–598
(2014)

34. Hartmanns, A., Hermanns, H.: Explicit model checking of very large MDP using
partitioning and secondary storage. In: ATVA. LNCS, vol. 9364, pp. 131–147 (2015)

35. Hartmanns, A., Hermanns, H., Bungert, M.: Flexible support for time and costs
in scenario-aware dataflow. In: EMSOFT. pp. 3:1–3:10. ACM (2016)

36. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
37. Holzmann, G.J.: The model checker SPIN. IEEE TSE 23(5), 279–295 (1997)
38. ISO 15909-2:2011. High-level Petri nets – Part 2: Transfer format (2011)
39. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:

High-performance language-independent model checking. In: TACAS. LNCS, vol.
9035, pp. 692–707 (2015)

40. Katoen, J., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: CSD. LNCS, vol. 9360, pp. 15–32 (2015)

41. Katoen, J., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)

42. Keefe, K., Sanders, W.H.: Möbius shell: A command-line interface for Möbius. In:
QEST. LNCS, vol. 8054, pp. 282–285 (2013)

43. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV. LNCS, vol. 6806, pp. 585–591 (2011)

44. Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In:
QEST. pp. 203–204. IEEE CS (2012)

45. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. TCS 282(1), 101–150
(2002)

46. L’Ecuyer, P., Le Gland, F., Lezaud, P., Tuffin, B.: Splitting techniques. In: Rare
Event Simulation using Monte Carlo Methods, pp. 39–61. John Wiley & Sons, Ltd.
(2009)

47. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
Design and logical encoding. In: TACAS. LNCS, vol. 6015, pp. 312–327 (2010)

48. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, Inc., 1st edn. (1994)

49. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005)

50. Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer (1980)
51. Molnár, G.: js-schema website. molnarg.github.io/js-schema, accessed: 2016-01-28
52. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, Inc. (1994)
53. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Parameter synthesis

for Markov models: Faster than ever. In: ATVA. LNCS, vol. 9938, pp. 50–67 (2016)
54. Sanner, S.: Relational dynamic influence diagram language (RDDL): Language

description (2010), users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
55. Stöcker, J., Lang, F., Garavel, H.: Parallel processes with real-time and data: The

Atlantif intermediate format. In: iFM. LNCS, vol. 5423, pp. 88–102 (2009)
56. Theelen, B.D., Geilen, M., Basten, T., Voeten, J., Gheorghita, S.V., Stuijk, S.:

A scenario-aware data flow model for combined long-run average and worst-case
performance analysis. In: MEMOCODE. pp. 185–194. IEEE CS (2006)

57. Villén-Altamirano, M., Villén-Altamirano, J.: The rare event simulation method
RESTART: efficiency analysis and guidelines for its application. In: Network Per-
formance Engineering, LNCS, vol. 5233, pp. 509–547 (2011)

http://molnarg.github.io/js-schema/
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

	JANI: Quantitative Model and Tool Interaction

